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Contact tracing and epidemics control in social networks
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A generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse
random networks is introduced which incorporates contact tracing in addition to random screening. We propose
a deterministic mean-field description that yields quantitative agreement with stochastic simulations on random
graphs. Both the stochastic simulations and the mean-field equations show secondary epidemics if the contact
tracing is not performed with sufficient strength. We also analyze the role of contact tracing in epidemics
control in small-world networks and show that its effectiveness grows as the rewiring probability is reduced.
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Properties of complex networks recently attracted muchon the assumption that infection is a slow branching process,
attention in physical communifyl]. Although perhaps it was while contact tracing occurs at a much shorter time scale.
prompted by the advent of the Internet and World-Wide Web This leads to a familiar SIR-type model with rescaled param-
the importance of this subject goes far beyond computer negters and similar dynamics. In this paper we consider a more
works. Indeed, daily commute, power and goods trafficrealistic model in which infection and contact tracing occur
wired and wireless communication, infection spreading, etcconcurrently, and their interplay determines the dynamics of
occur within certain physical or social networks. The theorythe system.
of infection spreading, which is known as mathematical epi- Stochastic modelWe assume that the population consists
demiology, has a long and rich histofgee, e.g., Ref2]).  of N hosts whose connections to one another form a fixed
However, until recently the epidemiological studies havegraph. The hosts are enumerated with index1, ... N. A
been mostly concerned with the so-called mean-field descrigroden is said to have a degre€n) if it is connected tok
tion of epidemics, in which it is assumed that at any time theother hosts. In case of random graphs the degree distribution
probability to get infected is the same for all individuals. In iS Poissonian with a certain mean degkee (k(n)).
some other works, spreading of an infection on relatively For simplicity, we assume that there in no spontaneous
simple lattices of individuals has been studied within therecovery, an infected individual can only be disinfected ex-
so-called “forest-fire” modelg3]. Only recently, the studies ternally through screening. Immediately upon disinfecting,
that elucidate the role of underlying network structure in thethe individual becomesaced(T) for a certain period of time
infection spreading began to appear in the literafd,7,§.  during which its neighbors are checked for possible infec-

Most of the epidemiological models are based on severdion. After that time, the individual spontaneously becomes
simple assumptions regarding infection contracting and cur¢emoved, and its neighbors are no longer traced.

In particular, the most common mechanism of infection is Infection S—1. Initially, the whole population except for
through contact with an infected individual, and the mecha-one host is assumed to be susceptible to infection. The prob-
nism of recovery is either deterministic or purely stochasticability of host infection depends on the state of its nearest
with a certain typical time of recovery. In the simplest neighbors. The infection dynamics is modeled as a simple
susceptible-infectious-susceptible model, a recovered indicontact process: if a susceptible naubask;(n) infectious
vidual immediately becomes susceptible again, while in axeighbors, the probability that it becomes infectious during a
more complicated susceptible-infectious-remové8IR)  small At time interval isak;(n)At.

model, cured individuals become immune and effectively ex- Tracing I—-T. The process of infection elimination con-
cluded from further dynamics. sists in finding infectious hosts and then curing them. Hosts

While these models give a good description of the evolu-are being checked with certain probabil@ythat depends on
tion of many common infectious diseases, they usually nethe state of their neighbors. We postulate that if an infectious
glect the role of intelligent strategies to stop nascent epidenhost is checked, it is immediately cured, eliminated or at
ics. Few epidemiological models take into accountleast isolated so it cannot infect other hosts. We introduce
prevention strategies such as, for example, mass and ririg/o nonexclusive strategies of checking for infectious hosts:
vaccination[9]. In practice, one of the main counterepidem-random checking and contact tracing. Random checking
ics measures isontact tracing when individuals that have means choosing an arbitrary host with probabil@yAt,
been in contact with an infecte@nd identified individual, =~ while contact tracing of hosh is done with probability
are found and thoroughly checked. It applies, among others3;k;(n)At, wherek;(n) is the number of neighbors af
to the treatment of sexually transmitted diseases, tactics afhich are in thdracedstateT. The random checking process
law-enforcement organizations trying to uncover criminal oris equivalent to the removal process of general epidemics
terrorist networks, cleaning of computer virus infection, etc.[2].

We are only aware of one theoretical pap&6f| where a Removal F=R. With certain probability yAt, traced
model of this kind has been studied. The mddd€]] is based hosts are transformed into tlemovedstate, in which they

1063-651X/2002/66)/056115%4)/$20.00 66 056115-1 ©2002 The American Physical Society



R. HUERTAAND L. S. TSIMRING PHYSICAL REVIEW E66, 056115 (2002

0 to 2.5 with a step value of 0.1. The initigdxponential
phase of the epidemics growth is nearly independers,of
because the contact tracing process is intrinsically nonlinear
(it requires the presence ofT connected pairs and, there-
fore, only begins after the first infected node is randomly
screenefl As expected, the tracing process significantly re-
duces the magnitude of the epidem{osaximal value ofi),

but at large times the infection decays with the same expo-
nential rate as fopB;=0.0 (again, because we return to the
linear regime at small). The most interesting feature of the
process at larg@,;>0.35 is the presence of a second maxi-
Time mum of i which indicates a second epidemic. Due to this
second epidemic, the percentage of the infectious population

FIG. 1. Infected population in a random graph of 1000 nodes t large times>40 mav actually increase with increase of
andK=10 for «a=0.1,y=0.5. The solid thick line corresponds to atfarge U Y ually increase with increas

B,=0,8,=0, and the dashed line 16, =0.028,= 0. Thin lines are B: . It means that the range @ values from 0.4 to 0.9 are

for 8,=0.02 andB,;=0.1,0.2 . . .,2.5 not better to control the epidemics than values smaller than
’ T 0.4.

also cannot be infected, but they are no longer under obser- Mean-field equationsAt first sight, it seems that the

vation, so they do not initiate contact tracing. mean-field approach cannot be applied to contact tracing,

Stochastic simulationsf the described process were per- since it does not take into account the nonuniform distribu-
formed using the Gillespie algorithfdl]. It is significantly  tion of infection in the population. Nevertheless, a more so-
superior over synchronous and asynchronous updatghisticated mean-field approach that operates not only with
schemes, both in terms of accuracy and computational speetthe mean densities of states, but also with the densities of
In this event-driven scheme we select the time lapsed bdinks connecting nodes with different states, can be applied.
tween two consecutive events from a Poisson distributionin the context of nonequilibrium kinetics on lattices this ap-
with a combined probability of all eventinfection, tracing, proach is known as multisite or cluster mean-field theory
recovery, etg, then choose a nod@ach node has its own (see, for example, Ref6]). In epidemiological context, this
probability to be chosen, depending on its state and the statepproach was pioneered by R4 (see also Ref.8]). Let
of its neighborg and apply the transition from one state to us introduce the number of nodés the number of con-
another according to the ratio of individual transition prob-nected pair§ AB], and triple§ ABC] of nodes, wheré\, B,
abilities. andC stand for any of the typeS,|,T,R. For example, the

In our simulations with random graph based networks, wenumber of connected pairs of infectious and traced nodes is
typically built networks with average degrdé=10 and denotedIT]. Note thaf AB]=[BA] and each pair ifAA]
1000 nodes. For every random graph we ran 100 simulationis counted twice. For largd\, the ratiosA/N, [AB]/N,
starting every time from a singlédut different in each run  [ABC]/N approach deterministic limits which we label
infected host. Then we averaged the results for 50 randora,[ab],[abc], respectively.

graphs. The time bin wast=10"° for most simulations. In The dynamics of the model is described by the following
all simulations we varied the tracing parametgysand 3;, set of rate equations:

while the infection constant was setat 0.1, and the tran-

sition rate fromT to R, y=0.5. The latter parameter is im- s=—afsi], 1)
portant for the effectiveness of the targeting elimination, be-

cause the longer a node remains in the traced state, the more i = asi]—B,i— il )

probable it is to trace its neighboring infectious nodes. How-
ever, since tracing presumably bears a significant cost, an

optimal choice of the tracing parametey; ( B;, andvy) for [ss=—2alssl], @)
a given epidemic is an important issue. . o ) ) )

In Fig. 1 we present the “prevalence” of epidemitthe [si]=a([ssi]—[isi]—[si]) = B[si]—Bdsit], (4)
fraction of infectious nodes in the whole populatian )
=1/N) as a function of time for several values8f and g, . [ii]=2a([isi]+][si])—2B,[ii]—2B4ii ], (5)
When B, = B;=0.0 we have a simpl8I process, and all the
nodes eventually get infectedhick solid line in Fig. 2. [s7]=—alist]+ B,[si]+ B sit]— y[s7], (6)

Other curves show the fraction of infectious nodes as a func-
tion of time for 8,=0.02 and different values g8;. The T . I T
ratio o/ B, is chosen to be above the epidemics thresh®]d Lir]=afist]+ B il + il 7l =[riz] =[i]) = oAi7]

For B;=0 we obtain the classicab|R process with ran- —B.lit]. (7)
domly removed infectivegsdashed line in Fig. )1 The epi-

demic eventually saturates, and the fraction of infectioudHere we used the notation=[T]/N to avoid confusion be-
nodes decays exponentially. The lower lines display the evaiween the density of traced nodes and tim&lote that we
lution of the infection fraction for values @8, ranging from  omit here the equations fat [ 77], as well as any combina-
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tions involving the removed state, since they do not affect 10
the dynamics of the infectious population.

The meaning of these equations is rather straightforward
For example, the terms in the right-hand side of the last
equation can be explained as follows. B ) pair becomes
[i7] through infection of a susceptible node random 107
screening of the infectious nodgin an[ii] pair, or through
contact tracing of nodg from noder in a (p,q,r) triple in -
the statdii r]. However, we can lose dmr] pair by contact =
tracing of thep node in a[ 7ir] triple (r,p,q), by direct
tracing ofp by g, by removing ofg, or by random screening 10
of p. Other equations can be obtained from similar argu-
ments.

This set of equation is not closed, as the equations for the
pair densities contain triple densities. We need to introduce ¢
closure rule. Similarly to Ref$7,8], we can use the approxi- 10

-2

-3 1 1 1

mation[abc]=[ab][bc]/b, which follows from the condi- ° " Ti2r:e ¥ *
tion that the influence of a node on the state of its second
neighbor in a triple is negligiblg12]. FIG. 2. Evolution of the infection prevalence for differef,
Using this closure ru|e' we arrive at the fo”owing set of mean-field mode(lines) and stochastic simulatior(symbols), [e%
equations: =0.1, K=10, Br:0.0Z, 7:05
s=—asl, (8) B: - In the same figure we show the results of direct stochas-
tic simulations for severaB; [13]. Both numerical simula-
i=asi—Bi—Bir (9)  tions and the model exhibit the emergence of the secondary
epidemic outbreak after the first one is nearly suppressed.
i=(aKs—a—B)i- BT, (10) The mechanism of the secondary epidemic is related to the

interplay between the prevalence of invectious and traced
A s . . s\ . nodes. After the first outbreak, the large number of traced
Tzai—iw+ Bin— Bi— y—ai—i T+ B, 7, (11 nodes prevents the infection from spreaditite “instanta-
neous” basic reproduction numb&ta/(a+ B,+ B,7)<1),
however, as this number diminishes with the ratbelow a
certain threshold, the infection is able to spread again.

The most important question is whether contact tracing is
';]: af(2f+2_ M= (B, + Br) . (13  capable of arresting the exponential growth of the epidemic
I before it engulfs a finite portion of the total population.

. _ _ ) _ To answer this question, we consider the limit of small
wherei =[|§]/s is thAe mgan.nlumber of infectious neighbors epidemics in a large populatiori,f<l), then we can set
per susceptible node=[ir]/i is the mean number of traced s(t)=1 and drop Eq(9). We also observe thatli=K —1

neighbors per infectious nodg=ii ]/i is the mean number and drop Eq(9) as well. A simple calculation shows that the
of infectious neighbors of an infectious node, amd critical value of; at which the exponential growth of infec-
=[st]/s is the mean number of traced neighbors per suscegion is arrested,

tible node. Notice that the equation fipgs] dropped out as

W= 8,1+ B 7— YW, (12)

[ss]=Ks? satisfies the equations at all times. We used the [a(K—1)+y][a(K—1)— /]

initial  conditions  s(0)=1—1i,i(0)=io,i(0)=(K Bor= 3, : (14
—1)ig,7(0)=w(0)=%(0)=0 which correspond to a small

set of disconnected infectious nodes. For B> B, epidemic remains small at all times, and so

During the early stage of an epidemic the contact tracinghere is no major outbreak of the epidemic. For the parameter
can be neglectedr{=0), and Eqs(8)—(13) are reduced to a values of our stochastic simulationsy=0.1K=10,,
set of three equations fos,i,i which coincide with the =0.02;y=0.5, we obtain8.,=61.6. In Fig. 3 we show the
model that has been studied in R€f,8]. Independently of relative size of the epidemigy,,=1—s(t=%) as a function
B:, the initial epidemics growth is characterized by the basiof B, at different initial epidemic sizeig. In agreement with
reproduction numbeK o/ (a+ 3,). However, as the number the above argument, foB,<p., the value of ks, is
of traced individuals grows, the growth rate is reduced andveakly independent of,, and it drops to zero ag; ap-
the epidemic is saturated. In Fig. 2 the dynamics of the epiproaches3,; .
demics calculated from Eq&)—(13) are shown for different The mean-field equations proposed here are valid for net-
values ofg; . As seen from the figure, the maximum numberworks with a low clustering coefficieritl]. Sparse random
of infectious nodes is drastically reduced with increase ohetworks studied above represent a particular class of net-
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FIG. 4. The epidemic size as a function of the rewiring prob-
ability p. Effectiveness of the contact tracing becomes very signifi-
cant in the small-world regime.

FIG. 3. Total number of infectious nodes gs for differentiy.
Parameters are the same as in Fig. 2.

works with a short average minimal path and a small clus- |, this paper we studied the role of contact tracing as a
tering coefficient. Many social networks are characterized bBbart of the epidemics control strategy in complex networks.
a relatively large clustering coefficient while keeping the av-\we demonstrated that by applying this strategy, a major out-
erage minimal path low. We studied numerically the effect ofyreak can be significantly reduced or even eliminated at a
the network structure on the contact tracing of epidemicgma)| additional cost. Based on the pair correlation approach
within the small-world mode[14]. Changing the rewiring given by Rand7], we developed the mean-field model of
probability p allows us to scan the range of networks from contact tracing for the case of random graphs. We also stud-
regular p=0) to random p—1) through the small-world jeq the influence of network topology on contact tracing us-
range 0.00&p<0.1, which exhibits a short average mini- ing the small-world model with variable rewiring probability
mal path and a large clustering coefficient typical for manyy, ‘and found that its effectiveness grows as the reviring prob-

social networks. We used the same number of nodes angijity is reduced. The main change occurs within the small-
edges as for the random graph simulations, and fixed thgorid regime ap~102.

parameter values at=0.1, 8,=0.02, andy=0.5. Figure 4

shows the dependence of the epidemic Sige on p for This work was supported by the U.S. DOE under Grant
several differentB;. As we can seej;,; changes mostly No. DE-FG03-96ER14592, ARO MURI-ARO under Grant
within the small-world range (0.084p<0.1) where the No. DAAG55-98-0269, MCyT under Grant No. BFI2000-

clustering coefficient and the average path undergo larg#57, and NATO under Collaborative Linkage Grant No.
variations. PST.CLG.978512.
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