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Contact tracing and epidemics control in social networks
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A generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse
random networks is introduced which incorporates contact tracing in addition to random screening. We propose
a deterministic mean-field description that yields quantitative agreement with stochastic simulations on random
graphs. Both the stochastic simulations and the mean-field equations show secondary epidemics if the contact
tracing is not performed with sufficient strength. We also analyze the role of contact tracing in epidemics
control in small-world networks and show that its effectiveness grows as the rewiring probability is reduced.
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Properties of complex networks recently attracted mu
attention in physical community@1#. Although perhaps it was
prompted by the advent of the Internet and World-Wide W
the importance of this subject goes far beyond computer
works. Indeed, daily commute, power and goods traf
wired and wireless communication, infection spreading, e
occur within certain physical or social networks. The theo
of infection spreading, which is known as mathematical e
demiology, has a long and rich history~see, e.g., Ref.@2#!.
However, until recently the epidemiological studies ha
been mostly concerned with the so-called mean-field desc
tion of epidemics, in which it is assumed that at any time
probability to get infected is the same for all individuals.
some other works, spreading of an infection on relativ
simple lattices of individuals has been studied within t
so-called ‘‘forest-fire’’ models@3#. Only recently, the studies
that elucidate the role of underlying network structure in
infection spreading began to appear in the literature@4,5,7,8#.

Most of the epidemiological models are based on sev
simple assumptions regarding infection contracting and c
In particular, the most common mechanism of infection
through contact with an infected individual, and the mec
nism of recovery is either deterministic or purely stochas
with a certain typical time of recovery. In the simple
susceptible-infectious-susceptible model, a recovered i
vidual immediately becomes susceptible again, while in
more complicated susceptible-infectious-removed~SIR!
model, cured individuals become immune and effectively
cluded from further dynamics.

While these models give a good description of the evo
tion of many common infectious diseases, they usually
glect the role of intelligent strategies to stop nascent epid
ics. Few epidemiological models take into accou
prevention strategies such as, for example, mass and
vaccination@9#. In practice, one of the main counterepidem
ics measures iscontact tracing, when individuals that have
been in contact with an infected~and identified! individual,
are found and thoroughly checked. It applies, among oth
to the treatment of sexually transmitted diseases, tactic
law-enforcement organizations trying to uncover criminal
terrorist networks, cleaning of computer virus infection, e
We are only aware of one theoretical paper@10# where a
model of this kind has been studied. The model@10# is based
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on the assumption that infection is a slow branching proce
while contact tracing occurs at a much shorter time sc
This leads to a familiar SIR-type model with rescaled para
eters and similar dynamics. In this paper we consider a m
realistic model in which infection and contact tracing occ
concurrently, and their interplay determines the dynamics
the system.

Stochastic model. We assume that the population consis
of N hosts whose connections to one another form a fi
graph. The hosts are enumerated with indexn51, . . . ,N. A
noden is said to have a degreek(n) if it is connected tok
other hosts. In case of random graphs the degree distribu
is Poissonian with a certain mean degreeK5^k(n)&.

For simplicity, we assume that there in no spontane
recovery, an infected individual can only be disinfected e
ternally through screening. Immediately upon disinfectin
the individual becomestraced~T! for a certain period of time
during which its neighbors are checked for possible inf
tion. After that time, the individual spontaneously becom
removed, and its neighbors are no longer traced.

Infection S→I . Initially, the whole population except fo
one host is assumed to be susceptible to infection. The p
ability of host infection depends on the state of its near
neighbors. The infection dynamics is modeled as a sim
contact process: if a susceptible noden haski(n) infectious
neighbors, the probability that it becomes infectious durin
small Dt time interval isaki(n)Dt.

Tracing I→T. The process of infection elimination con
sists in finding infectious hosts and then curing them. Ho
are being checked with certain probabilityb that depends on
the state of their neighbors. We postulate that if an infectio
host is checked, it is immediately cured, eliminated or
least isolated so it cannot infect other hosts. We introd
two nonexclusive strategies of checking for infectious hos
random checking and contact tracing. Random check
means choosing an arbitrary host with probabilityb rDt,
while contact tracing of hostn is done with probability
b tkt(n)Dt, where kt(n) is the number of neighbors ofn
which are in thetracedstateT. The random checking proces
is equivalent to the removal process of general epidem
@2#.

Removal T→R. With certain probabilitygDt, traced
hosts are transformed into theremovedstate, in which they
©2002 The American Physical Society15-1
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also cannot be infected, but they are no longer under ob
vation, so they do not initiate contact tracing.

Stochastic simulationsof the described process were pe
formed using the Gillespie algorithm@11#. It is significantly
superior over synchronous and asynchronous up
schemes, both in terms of accuracy and computational sp
In this event-driven scheme we select the time lapsed
tween two consecutive events from a Poisson distribu
with a combined probability of all events~infection, tracing,
recovery, etc.!, then choose a node~each node has its ow
probability to be chosen, depending on its state and the s
of its neighbors!, and apply the transition from one state
another according to the ratio of individual transition pro
abilities.

In our simulations with random graph based networks,
typically built networks with average degreeK510 and
1000 nodes. For every random graph we ran 100 simulat
starting every time from a single~but different in each run!
infected host. Then we averaged the results for 50 rand
graphs. The time bin wasDt51026 for most simulations. In
all simulations we varied the tracing parametersb r andb t ,
while the infection constant was set ata50.1, and the tran-
sition rate fromT to R, g50.5. The latter parameter is im
portant for the effectiveness of the targeting elimination,
cause the longer a node remains in the traced state, the
probable it is to trace its neighboring infectious nodes. Ho
ever, since tracing presumably bears a significant cost
optimal choice of the tracing parameters (b r , b t , andg) for
a given epidemic is an important issue.

In Fig. 1 we present the ‘‘prevalence’’ of epidemics~the
fraction of infectious nodes in the whole populationi
5I /N) as a function of time for several values ofb r andb t .
Whenb r5b t50.0 we have a simpleSI process, and all the
nodes eventually get infected~thick solid line in Fig. 1!.
Other curves show the fraction of infectious nodes as a fu
tion of time for b r50.02 and different values ofb t . The
ratio a/b r is chosen to be above the epidemics threshold@2#.
For b t50 we obtain the classicalSIR process with ran-
domly removed infectives~dashed line in Fig. 1!. The epi-
demic eventually saturates, and the fraction of infectio
nodes decays exponentially. The lower lines display the e
lution of the infection fraction for values ofb t ranging from

FIG. 1. Infected population in a random graph of 1000 nod
andK510 for a50.1,g50.5. The solid thick line corresponds t
b r50,b t50, and the dashed line tob r50.02,b t50. Thin lines are
for b r50.02 andb t50.1,0.2, . . . ,2.5.
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0 to 2.5 with a step value of 0.1. The initial~exponential!
phase of the epidemics growth is nearly independent ofb t ,
because the contact tracing process is intrinsically nonlin
~it requires the presence ofI -T connected pairs and, there
fore, only begins after the first infected node is random
screened!. As expected, the tracing process significantly
duces the magnitude of the epidemics~maximal value ofi ),
but at large times the infection decays with the same ex
nential rate as forb t50.0 ~again, because we return to th
linear regime at smalli ). The most interesting feature of th
process at largeb t.0.35 is the presence of a second ma
mum of i which indicates a second epidemic. Due to th
second epidemic, the percentage of the infectious popula
at large timest.40 may actually increase with increase
b t . It means that the range ofb t values from 0.4 to 0.9 are
not better to control the epidemics than values smaller t
0.4.

Mean-field equations. At first sight, it seems that the
mean-field approach cannot be applied to contact trac
since it does not take into account the nonuniform distrib
tion of infection in the population. Nevertheless, a more
phisticated mean-field approach that operates not only w
the mean densities of states, but also with the densitie
links connecting nodes with different states, can be appl
In the context of nonequilibrium kinetics on lattices this a
proach is known as multisite or cluster mean-field theo
~see, for example, Ref.@6#!. In epidemiological context, this
approach was pioneered by Rand@7# ~see also Ref.@8#!. Let
us introduce the number of nodesA, the number of con-
nected pairs@AB#, and triples@ABC# of nodes, whereA, B,
andC stand for any of the typesS,I ,T,R. For example, the
number of connected pairs of infectious and traced node
denoted@ IT#. Note that@AB#5@BA# and each pair in@AA#
is counted twice. For largeN, the ratiosA/N, @AB#/N,
@ABC#/N approach deterministic limits which we labe
a,@ab#,@abc#, respectively.

The dynamics of the model is described by the followi
set of rate equations:

ṡ52a@si#, ~1!

i̇ 5a@si#2b r i 2b t@ i t#, ~2!

@ ṡs522a@ssi#, ~3!

@ ṡi #5a~@ssi#2@ isi#2@si# !2b r@si#2b t@sit#, ~4!

@ i̇ i #52a~@ isi#1@si# !22b r@ i i #22b t@ i i t#, ~5!

@ ṡt#52a@ ist#1b r@si#1b t@sit#2g@st#, ~6!

@ i̇ t#5a@ ist#1b r@ i i #1b t~@ i i t#2@t i t#2@ i t#!2g@ i t#

2b r@ i t#. ~7!

Here we used the notationt5@T#/N to avoid confusion be-
tween the density of traced nodes and timet. Note that we
omit here the equations fort, @tt#, as well as any combina

s
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tions involving the removed state, since they do not aff
the dynamics of the infectious population.

The meaning of these equations is rather straightforw
For example, the terms in the right-hand side of the l
equation can be explained as follows. A (p,q) pair becomes
@ i t# through infection of a susceptible nodep, random
screening of the infectious nodeq in an @ i i # pair, or through
contact tracing of nodeq from noder in a (p,q,r ) triple in
the state@ i i t#. However, we can lose an@ i t# pair by contact
tracing of thep node in a@t i t# triple (r ,p,q), by direct
tracing ofp by q, by removing ofq, or by random screening
of p. Other equations can be obtained from similar arg
ments.

This set of equation is not closed, as the equations for
pair densities contain triple densities. We need to introduc
closure rule. Similarly to Refs.@7,8#, we can use the approxi
mation @abc#5@ab#@bc#/b, which follows from the condi-
tion that the influence of a node on the state of its sec
neighbor in a triple is negligible@12#.

Using this closure rule, we arrive at the following set
equations:

ṡ52as î, ~8!

i̇ 5as î2b r i 2b ti t̂, ~9!

i̇̂ 5~aKs2a2b r ! î 2b t î t̂, ~10!

ṫ̂5a
s

i
î ŵ1S b tĥ2b t2g2a

s

i
î D t̂1b r ĥ, ~11!

ẇ̂5b r î 1b t î t̂2gŵ, ~12!

ḣ̂5a
s

i
~2 î 122ĥ ! î 2~b r1b tt̂ !ĥ. ~13!

where î 5@ is#/s is the mean number of infectious neighbo
per susceptible node,t̂5@ i t#/ i is the mean number of trace
neighbors per infectious node,ĥ5@ i i #/ i is the mean numbe
of infectious neighbors of an infectious node, andŵ
5@st#/s is the mean number of traced neighbors per susc
tible node. Notice that the equation for@ss# dropped out as
@ss#5Ks2 satisfies the equations at all times. We used
initial conditions s(0)512 i 0 ,i (0)5 i 0 , î (0)5(K
21)i 0 ,t̂(0)5ŵ(0)5ĥ(0)50 which correspond to a sma
set of disconnected infectious nodes.

During the early stage of an epidemic the contact trac
can be neglected (t50), and Eqs.~8!–~13! are reduced to a
set of three equations fors,i , î which coincide with the
model that has been studied in Refs.@7,8#. Independently of
b t , the initial epidemics growth is characterized by the ba
reproduction numberKa/(a1b r). However, as the numbe
of traced individuals grows, the growth rate is reduced a
the epidemic is saturated. In Fig. 2 the dynamics of the e
demics calculated from Eqs.~8!–~13! are shown for different
values ofb t . As seen from the figure, the maximum numb
of infectious nodes is drastically reduced with increase
05611
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b t . In the same figure we show the results of direct stoch
tic simulations for severalb t @13#. Both numerical simula-
tions and the model exhibit the emergence of the second
epidemic outbreak after the first one is nearly suppress
The mechanism of the secondary epidemic is related to
interplay between the prevalence of invectious and tra
nodes. After the first outbreak, the large number of trac
nodes prevents the infection from spreading~the ‘‘instanta-
neous’’ basic reproduction numberKa/(a1b r1b tt̂),1),
however, as this number diminishes with the rateg below a
certain threshold, the infection is able to spread again.

The most important question is whether contact tracing
capable of arresting the exponential growth of the epide
before it engulfs a finite portion of the total population.

To answer this question, we consider the limit of sm
epidemics in a large population (i , î !1), then we can se
s(t)51 and drop Eq.~9!. We also observe thatî / i 5K21
and drop Eq.~9! as well. A simple calculation shows that th
critical value ofb t at which the exponential growth of infec
tion is arrested,

bcr5
@a~K21!1g#@a~K21!2b r #

b r
. ~14!

For b.bcr , epidemic remains small at all times, and
there is no major outbreak of the epidemic. For the param
values of our stochastic simulations,a50.1,K510,b r
50.02,g50.5, we obtainbcr561.6. In Fig. 3 we show the
relative size of the epidemici tot512s(t5`) as a function
of b t at different initial epidemic sizesi 0. In agreement with
the above argument, forb t,bcr the value of 12s` is
weakly independent ofi 0, and it drops to zero asb t ap-
proachesbcr .

The mean-field equations proposed here are valid for
works with a low clustering coefficient@1#. Sparse random
networks studied above represent a particular class of

FIG. 2. Evolution of the infection prevalence for differentb t ,
mean-field model~lines! and stochastic simulations~symbols!, a
50.1, K510, b r50.02, g50.5.
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works with a short average minimal path and a small cl
tering coefficient. Many social networks are characterized
a relatively large clustering coefficient while keeping the a
erage minimal path low. We studied numerically the effect
the network structure on the contact tracing of epidem
within the small-world model@14#. Changing the rewiring
probability p allows us to scan the range of networks fro
regular (p50) to random (p→1) through the small-world
range 0.001,p,0.1, which exhibits a short average min
mal path and a large clustering coefficient typical for ma
social networks. We used the same number of nodes
edges as for the random graph simulations, and fixed
parameter values ata50.1, b r50.02, andg50.5. Figure 4
shows the dependence of the epidemic sizei tot on p for
several differentb t . As we can see,i tot changes mostly
within the small-world range (0.001,p,0.1) where the
clustering coefficient and the average path undergo la
variations.

FIG. 3. Total number of infectious nodes vsb t for different i 0.
Parameters are the same as in Fig. 2.
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In this paper we studied the role of contact tracing a
part of the epidemics control strategy in complex networ
We demonstrated that by applying this strategy, a major o
break can be significantly reduced or even eliminated a
small additional cost. Based on the pair correlation appro
given by Rand@7#, we developed the mean-field model
contact tracing for the case of random graphs. We also s
ied the influence of network topology on contact tracing u
ing the small-world model with variable rewiring probabilit
p, and found that its effectiveness grows as the reviring pr
ability is reduced. The main change occurs within the sm
world regime atp;1022.

This work was supported by the U.S. DOE under Gra
No. DE-FG03-96ER14592, ARO MURI-ARO under Gra
No. DAAG55-98-0269, MCyT under Grant No. BFI2000
157, and NATO under Collaborative Linkage Grant N
PST.CLG.978512.

FIG. 4. The epidemic size as a function of the rewiring pro
ability p. Effectiveness of the contact tracing becomes very sign
cant in the small-world regime.
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